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Vector Calculus Module III Dr. Atul Kumar Ray 

Government College of Engineering Keonjhar 

LECTURE NOTES 

MATHS-II 

VECTOR CALCULUS 

 

Module - IV (10 Hours)  

Syllabus: Vector integral calculus: Line Integrals, Green Theorem, Surface 

integrals, Volume integral, Gauss theorem and Stokes Theorem. 

LINE INTEGRL : 

Single integral as a function defined on a segment of a curve is called Line integral. Line 

integral of vector vector field  ⃗⃗  along some curve C can be written as 

∫  ⃗⃗    ⃗ 

 

 

 ∫              

 

 

 

Where,  ⃗⃗     ̂     ̂     ̂   and   ⃗     ̂     ̂     ̂ 

 

Evaluate 

∫         

 

 

 

C: straight line segment from (0,0) to (   ).  

Given integral   ∫          
 

 
 

C: straight line segment from  (0,0) to (   ) 

   

   
 

   

   
   

      

          

                       

 ∫          

 

 

 ∫    

 

 

 ∫    

 

 

 



2 
 

Vector Calculus Module III Dr. Atul Kumar Ray 

 ∫    

 

 

 ∫    

 

 

 
 

 
 

 

 
   

___________________________________________________________________________ 
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Conservative Field  

Definition: A vector field  ⃗⃗  defined in some region is called conservative if  

∫  ⃗⃗    ⃗ 

 

  

 ∫  ⃗⃗    ⃗ 

 

  

 

whenever    and    are any two simple curves in the region with the same initial and 

terminal points. 

Note: 1)  A vector field  ⃗⃗  is conservative (irrotational) if and only if  ∫  ⃗⃗    ⃗ 
 

 
   1for 

every simple closed curve in the region where    is defined. 

2) If  ⃗⃗  is conservative, then  ⃗⃗  is necessarily gradient of some scalar function. 

3) If a vector field F is defined in a simply-connected region in the xy-plane and ∇ × F = 

0 throughout that region, then F is conservative. 

Example 

Show that    ⃗⃗           ̂     ̂       ̂   is conservative force field. Find scalar 

potential       ⃗⃗ . 

Soln. :  If       ⃗⃗    

 ⃗⃗   ⃗⃗    

Then  ⃗⃗  is called conservative field (irrotational vector). 

      ⃗⃗   ⃗⃗   ⃗⃗  ||

 ̂  ̂  ̂

   
 

  
      

 

  
  

 

  

            

|| 

             ̂       ̂           ̂         

                

Thus,    is called conservative force field. 

Soln. : If  ⃗⃗  is conservative, then  ⃗⃗  is necessarily gradient of some scalar function. Thus,  

 ⃗⃗     
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         ̂     ̂       ̂   ⃗⃗   ̂
  

  
  ̂

  

  
  ̂

  

  
 

 
  

  
                           

 
  

  
                  

 
  

  
                    

All equations are same 

Hence  

          

            

            

Hence,             Ans. 

Area  

1.  In calculus of a single variable        the definite integral 

∫       
    

   

 

for        is area under the curve from     to    . 

2.   In calculus of a two variable the definite integral          

∬          

 

 

 

a) If           , then  

     ∬    

 

 

 

b)   If         , the definite integral is equal to the volume under the surface 

         and above    -plane for x and y in the region R 

Area using line integral 

Let C be simply connected smooth curve with anti clockwise direction in the plane R 

     
 

 
(∫       

 

 

) 
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Using green’s theorem, ∫                    
 

 
 ∬ (

   

  
 

   

  
)    

 

 
  

     ,      

∫       
 

 

  ∬    

 

 

      

This integral is usually evaluated with help of parametric form. 

SURFACE INTEGRALS 
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GREEN’S   THEOREM 

Green’s Theorem is relation between line integral and surface integral in    -plane 

only.  

If R is closed region in the xy- plane bounded by simple closed curve C (traversed in 

anti clockwise) and if         and         are continuous function having continuous 

partial derivatives in the region R, then 

∫                   

 

 

 ∬ (
   

  
 

   

  
)    

 

 

 

Note:  ⃗⃗          ̂           ̂ and     ⃗     ̂     ̂,   Then   

     ⃗⃗    ⃗                      

 

Question 1 

Using Green’s theorem, Evaluate ∫           
 

 
 where C is closed path formed by 

    and       from               . 

Soln. :   

∫                   

 

 

 ∬ (
   

  
 

   

  
)    

 

 

 

STEP I: Compare  ∫                    
 

 
   with ∫           

 

 
 

                and             

STEP II: 

   

  
              

   

  
   

Soln. :  STEP III:  Substitute partial derivatives  
   

  
        

   

  
   

∫                   

 

 

 ∬ (
   

  
 

   

  
)    

 

 

 

∫          

 

 

 ∬          
 

 

 



13 
 

Vector Calculus Module III Dr. Atul Kumar Ray 

                ∬       
 

 

 

  is region bounded by     and      

∫          

 

 

 ∬       
 

 

 

STEP IV: Find limit of y in terms of x from given Curves 

  is region bounded by     and      

Limit of   is from      to     

STEP V: Find limit of x using given Curves 

    and      intersect at  

      

                      

So, Limit of                          

STEP VI: Substitute limit in surface integral 

∫          

 

 

 ∬       
 

 

 

 ∫ ∫        
   

    

   

   

 ∫        [ ]
  
 

   

   

 

 ∫              
   

   

   (
  

 
 

  

 
)
 

 

 

 
 

 
 

 

 
 

   

  
  

 

  
         

Question 2 

Using Green’s theorem, Evaluate ∫                
 

 
 where C consist of arc of 

parabola       from                .  

Soln. :   

∫                   

 

 

 ∬ (
   

  
 

   

  
)    

 

 

 

Figure 
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STEP I: Compare ∫                    
 

 
     ∫                

 

 
 

                   and               

STEP II: 

   

  
               

   

  
      

Soln. :  STEP III:  Substitute partial derivatives  
   

  
         

   

  
      

∫                   

 

 

 ∬ (
   

  
 

   

  
)    

 

 

 

∫          

 

 

 ∬              
 

 

 

                ∬        
 

 

 

C consist of arc of parabola       from                .  

∫               

 

 

 ∬        
 

 

 

STEP IV: Find limit of y in terms of x from given Curves 

  is region bounded by      and     

STEP V: Find limit of x using given Curves 

     and     intersect at  

      

         

So, Limit of                           

Limit of   is from      to     

STEP VI: Substitute limit in surface integral 

∫               

 

 

 ∬        
 

 

 

𝒚  𝟏  𝟏 𝟏    𝟏 𝟏  

 𝟎 𝟎  

𝒚  𝒙𝟐  



15 
 

Vector Calculus Module III Dr. Atul Kumar Ray 

 ∫ ∫         
   

    

   

    

 

   ∫    *
  

 
+
  

    

   

 

   ∫            
   

    

          *
  

 
 

  

 
+
  

 

   

 

 

STOKE’S   THEOREM 

Stoke’s Theorem is relation between line integral and surface integral.  

If  ⃗⃗  is any continuous differentiable vector function and S is surface bounded by a 

curve C then,  

∫  ⃗⃗    ⃗ 

 

 

 ∬     ⃗⃗ 
 

 

   ̂    

∫  ⃗⃗    ⃗ 

 

 

 ∬(   ⃗⃗ )
 

 

   ̂    

1.  The Green’s theorem is known as Stokes Theorem in a plane. 

2. ∫                              
 

 
 ∬ *(

   

  
 

   

  
)      (

   

  
 

 

 

   

  
)     (

   

  
 

   

  
)    + 

 

IMPORTANT NOTES 

1) For a circle           

Polar coordinates are                              

Limit of   vary from 0 to  . Limit of    vary from 0 to    (Depends on problem) 

2)   For a sphere              

Polar coordinates are 
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Limit of    vary from 0 to   

 

3)   For a parabola       

Parametric form are                              

4)   For a Cylinder             ,       

cylindrical form is                             

5) If the projection of surface S in    plane then  ̂   ̂  

Thus,         

6)   Let S is the surface of shape   , then normal vector  

 ⃗⃗        

 ̂  
     

|     |
 

 

Question 1 

Using Stoke’s theorem, Evaluate∫  ⃗⃗    ⃗ 
 

 
  where  ⃗⃗     ̂     ̂     ̂,  and C 

is                                       , z > 0 oriented in a positive 

direction. 

Soln. :     ∫  ⃗⃗    ⃗ 
 

 
 ∬ (   ⃗⃗ )

 

 
   ̂    

STEP I:  Find  ⃗⃗  

 ⃗⃗     ̂     ̂     ̂ 

STEP II: Obtain    ⃗⃗  

      ⃗⃗   ⃗⃗   ⃗⃗  ||

 ̂  ̂  ̂
 

  

 

  

 

  

      

||     ̂    ̂ 

STEP III:  Find   ̂ 

Let shape               

            ̂     ̂     ̂ 
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 ̂  
     

|     |
 

   ̂     ̂     ̂

√           
 

   ̂     ̂     ̂

      
 

 ̂  
  ̂    ̂    ̂

  
 

STEP IV:  Find                      
    

| ̂  ̂|
 

    

|
  ̂   ̂   ̂

  
  ̂|

  
    

 
 

STEP V:  Substitute     ⃗⃗   ,    ̂   and    in 

∫  ⃗⃗    ⃗ 

 

 

 ∬(   ⃗⃗ )
 

 

   ̂    

 ∬(   ̂    ̂)
 

 

  (
  ̂    ̂    ̂

  
) 

    

 
 

 ∬        
 

 

  
    

 
   ∬     

 

 

 

∫  ⃗⃗    ⃗ 

 

 

   ∬     
 

 

 

STEP VI:  Take projection in xy-plane and find limit of   and   

Projection of given Surface S            in xy-plane (z = 0) is 

         

Put                              

Limit of   vary from 0 to  . Limit of    vary from 0 to    

STEP VII:  Apply limit of   and   

∫  ⃗⃗    ⃗ 

 

 

   ∬     
 

 

   ∫ ∫             

   

   

  

   

 

   ∫         *
  

 
+
 

     

   

 

    ∫       

    

   

 

    [     ] 
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Question 

Verify Stoke’s theorem for the function  ⃗⃗     ̂      ̂ integrated along the square 

whose sides are                    in the plane    . 

Soln. :According to Stokes theorem 

∫  ⃗⃗    ⃗ 

 

 

 ∬(   ⃗⃗ )
 

 

   ̂    

R.H.S-STEP I: 

 ⃗⃗     ̂      ̂

STEP II: Obtain    ⃗⃗  

      ⃗⃗   ⃗⃗   ⃗⃗  ||

 ̂  ̂  ̂
 

  

 

  

 

  

     

||         ̂     ̂ 

∫  ⃗⃗    ⃗ 

 

 

 ∬(   ⃗⃗ )
 

 

   ̂    

 ⃗⃗   ⃗⃗     ̂  

STEP III:  Find   ̂ 

Since the square is in          

Hence,   ̂   ̂ 

STEP IV:  Find     

   
    

| ̂  ̂|
                   

∫  ⃗⃗    ⃗ 

 

 

 ∬(   ⃗⃗ )
 

 

   ̂    

STEP V- Limit of x and y 

                            

R.H.S  

∬ (   ⃗⃗ )
 

 
   ̂    ∫ ∫    ̂     ̂    
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  ∫ ∫      

 

   

 

   

  ∫ *
  

 
+
 

  

   

    
  

 
[ ] 

   
  

 
 

∬(   ⃗⃗ )
 

 

   ̂     
  

 
 

L.H.S. 

∫  ⃗⃗    ⃗ 
 

 
 ∫  ⃗⃗    ⃗ 

 

  
 ∫  ⃗⃗    ⃗ 

 

  
  

                 ∫  ⃗⃗    ⃗ 
 

  
 ∫  ⃗⃗    ⃗ 

 

  
  

STEP I-  ⃗⃗     ̂      ̂ 

  ⃗     ̂     ̂  

 ⃗⃗    ⃗      ̂     ̂      ̂     ̂            

 ⃗⃗    ⃗            

Along    

           

∫  ⃗⃗    ⃗ 

 

  

 ∫          

 

  

 

             ∫            

  

 

   

∫  ⃗⃗    ⃗ 

 

  

   

Along    

           

Limit of y is from y = 0 to y = a 

∫  ⃗⃗    ⃗ 

 

  

 ∫          

 

  

 

             ∫           

 

  

 ∫       

  

 

  *
  

 
+
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∫  ⃗⃗    ⃗ 

 

  

 
  

 
 

Along    

           

Limit of x is from x = a to x = 0 

∫  ⃗⃗    ⃗ 

 

  

 ∫          

 

  

 

             ∫           

 

  

   ∫   

  

 

             

∫  ⃗⃗    ⃗ 

 

  

     

Along    

           

∫  ⃗⃗    ⃗ 

 

  

 ∫          

 

  

 

             ∫           

  

 

   

∫  ⃗⃗    ⃗ 

 

  

   

L.H.S. 

∫  ⃗⃗    ⃗ 

 

 

 ∫  ⃗⃗    ⃗ 

 

  

 ∫  ⃗⃗    ⃗ 

 

  

 ∫  ⃗⃗    ⃗ 

 

  

 ∫  ⃗⃗    ⃗ 
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∫  ⃗⃗    ⃗ 

 

 

 ∬(   ⃗⃗ )
 

 

   ̂     
  

 
                       

 

DIVERGENCE   THEOREM 

Divergence  Theorem is relation between surface integral and volume integral.  

If  ⃗⃗  is any continuous differentiable vector function in region V bounded by a closed 

surface S then,  

∬ ⃗⃗ 
 

 

   ̂    ∭    ⃗⃗    

 

 

 

∬ ⃗⃗ 
 

 

   ̂    ∭(   ⃗⃗ )  

 

 

 

1. If  ⃗⃗  is solenoidal then ∬  ⃗⃗ 
 

 
   ̂      . 

2. ∬                                    
 

 
 ∭(

   

  
 

   

  
 

   

  
)   

Question 1 

Using Divergence theorem theorem, Evaluate∬  ⃗⃗ 
 

 
    ⃗⃗  where  ⃗⃗     ̂      ̂     ̂,  

and S is surface                         , z = 0, z = 3. 

Soln. :   ∬  ⃗⃗ 
 

 
    ⃗⃗  ∭ (   ⃗⃗ )  

 

 
 

STEP I:  Find  ⃗⃗  

 ⃗⃗     ̂      ̂     ̂ 

STEP II: Obtain    ⃗⃗  

      ⃗⃗   ⃗⃗   ⃗⃗  
   

  
 

   

  
 

   

  
 

 
   

  
 

    

  
 

   

  
         

STEP III:  Substitute    ⃗⃗           in Divergence theorem 

∬ ⃗⃗ 
 

 

    ⃗⃗  ∭(   ⃗⃗ )  
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 ∭               

 

 

 

STEP IV: Find range of   from       . 

Limit of   is from 0 to 3 

∬ ⃗⃗ 
 

 

    ⃗⃗  ∬ ∫                
   

   

 

 

 

 ∬            
       

 

 

 

 ∬             
 

 
 

STEP V: Find limit of   and   

Surface S :         which is circle, so polar coordinates 

                              

STEP VI : Substitute limit    

                              

Limit of   vary from 0 to  . Limit of    vary from 0 to    

∬  ⃗⃗ 
 

 
    ⃗⃗  ∫ ∫                   

   

   

    

   
  

   ∫ (  
  

 
        )

 

 

  
    

   
 

   ∫              
    

   
  

                
    

                        

Question 2 

Using Divergence theorem theorem, Evaluate∬  ⃗⃗ 
 

 
    ⃗⃗  where  ⃗⃗    ̂    ̂         ̂,  

and S is surface                         , z = 0, z = 3. 

 ∬  ⃗⃗ 
 

 
    ⃗⃗  ∭ (   ⃗⃗ )  

 

 
 

Soln. STEP I:  Find  ⃗⃗  

𝒛  𝟑 

𝒛  𝟎 

𝟐 𝟎 
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 ⃗⃗    ̂    ̂         ̂ 

STEP II: Obtain    ⃗⃗  

      ⃗⃗   ⃗⃗   ⃗⃗  
   

  
 

   

  
 

   

  
 

 
  

  
 

     

  
 

       

  
           

STEP III:  Substitute    ⃗⃗      in Divergence theorem 

∬ ⃗⃗ 
 

 

    ⃗⃗  ∭(   ⃗⃗ )  

 

 

 

 ∭          

 

 

 

STEP IV: Find range of   from given       . 

Limit of   is from 0 to 1 

∬ ⃗⃗ 
 

 

    ⃗⃗  ∬ ∫           
   

   

 

 

 

 ∬ (
   

 
)
 

 

    
 

 

 

 ∬    
 

 

                 

Surface is circle        , Area of the surface =     

∬ ⃗⃗ 
 

 

    ⃗⃗  ∬    
 

 

                

 

 

 There will be separate question set for Assignments and Practice. 

 All these questions are also explained in following YouTube Link 

https://www.youtube.com/channel/UCYg9RXUfbL1fdQhk1KdFsZQ?view_as=subscribe

r 

 

https://www.youtube.com/channel/UCYg9RXUfbL1fdQhk1KdFsZQ?view_as=subscriber
https://www.youtube.com/channel/UCYg9RXUfbL1fdQhk1KdFsZQ?view_as=subscriber

