Government College of Engineering Keonihar

LECTURE NOTES

MATHS-II

VECTOR CALCULUS

Module - IV (10 Hours)

Syllabus: Vector integral calculus: Line Integrals, Green Theorem, Surface integrals, Volume integral, Gauss theorem and Stokes Theorem.

LINE INTEGRL :

Single integral as a function defined on a segment of a curve is called Line integral. Line integral of vector vector field $\overrightarrow{\boldsymbol{F}}$ along some curve \mathbf{C} can be written as

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} F_{1} d x+F_{2} d y+F_{3} d z
$$

Where, $\vec{F}=F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \widehat{k}$ and $d \vec{r}=d x \hat{\imath}+d y \hat{\jmath}+d z \widehat{\boldsymbol{k}}$

Evaluate

$$
\int_{C} y^{2} d x-x^{2} d y
$$

C: straight line segment from $(0,0)$ to $(1,1)$.
Given integral $\int_{C} y^{2} d x-x^{2} d y$
C: straight line segment from $(0,0)$ to $(1,1)$

$$
\begin{gathered}
\frac{y-0}{1-0}=\frac{x-0}{1-0}=t \\
y=x=t \\
\Rightarrow d y=d x=d t \\
t \text { vary from } t=0 \text { to } t=1 \\
\int_{C} y^{2} d x-x^{2} d y=\int_{C} t^{2} d t-\int_{C} t^{2} d t
\end{gathered}
$$

$$
=\int_{0}^{1} t^{2} d t-\int_{0}^{1} t^{2} d t=\frac{1}{3}-\frac{1}{3}=0
$$

Example Evaluate $\int_{C} \vec{F} \cdot d \bar{r}$ where

$$
\vec{F}=x^{2} y^{2} \imath+y \hat{\jmath} \text { and curve } c \text { is } y^{2}=4 x \text { in }
$$

$$
x y \text {-plane from }(0,0) \text { to }(4,4)
$$

Sole -

$$
\vec{r}=x \hat{\imath}+y \hat{\jmath}
$$

$$
d \vec{r}=d x \hat{\imath}+d y \hat{\jmath}
$$

Given $\vec{F}=x^{2} y^{2} \hat{\imath}+y \hat{\jmath}$

$$
\begin{aligned}
\vec{F} \cdot d \vec{r} & =\left(x^{2} y^{2} \hat{\imath}+y \hat{\jmath}\right) \cdot(d x \hat{\imath}+d y \hat{\jmath}) \\
& =x^{2} y^{2} d x+y d y .
\end{aligned}
$$

Given Curve, $y^{2}=4 x$ in $x y$ plane from $(0,0)$
So,

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{C}\left(x^{2} y^{2} d x+y d y\right)= \\
& =\int_{C} x^{2} y^{2} d x+\int_{C} y d y
\end{aligned}
$$

So, $\int \vec{F} \cdot d \vec{x}=\int_{c} x^{2} y^{2} d x+\int_{c} y d y$

$$
=\int_{0}^{4} x^{2}(4 x) \cdot d x+\int_{0}^{4} y d y
$$

$$
=4 \int_{0}^{4} x^{3} d x+\left[\frac{y^{2}}{2}\right]_{0}^{4} \quad \begin{gathered}
y \text { vary fum } \\
0 \text { to } 4
\end{gathered}
$$

$$
=\left[x^{4}\right]_{0}^{4}+\frac{16}{2}
$$

$$
=256+8
$$

$$
=264 \quad \text { Ans. }
$$

Example Find work done in moving particle in a force field $\begin{aligned} \vec{F}= & 3 x^{2} \hat{\imath}+(z x z-y) \hat{\jmath} \\ & +z \hat{k}\end{aligned}$ along line joining $(0,0,0)$ to $(2,1,3)$.
Sol Work done $=\int_{C} \vec{F} \cdot d r$
Given,

$$
\text { Given, } \begin{aligned}
\vec{F} & =3 x^{2} \hat{\imath}+(2 x z-\hat{C}) \hat{\jmath}+z \hat{k} \\
\vec{k} & =x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
d \vec{s} & =d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k} \\
\text { War done } & \left.=\int_{C}\left(3 x^{2} \hat{\imath}+(2 x z-y) \hat{\jmath}+z \hat{k}\right] \cdot(d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k})\right] \\
& =\int_{C}\left(3 x^{2} d x+(2 x z-y) d y+z d z\right)
\end{aligned}
$$

$$
\begin{aligned}
& C \text { : line joining }(0,0,0) \text { to }(2,1,3) \\
& \frac{x-0}{2-0}=\frac{y-0}{1-0}=\frac{z-0}{3-0}=t \Rightarrow \begin{array}{l}
x=2 t \Rightarrow d x=2 d t \\
y=t \Rightarrow d y=d t
\end{array} \\
& z=3 t \quad \Rightarrow d z=3 d t \\
& \text { Work done }=\int_{0}^{1}\left[3 x^{2} d x+(2 x z-y) d y+z d z\right] \\
& C: \quad \begin{array}{l}
x=2 t \quad \Rightarrow \quad d x=2 d t \quad\left(\begin{array}{ll}
x=0 & x=2 \\
t=0 & t=1
\end{array}\right) \\
y=t \quad d y=d t:
\end{array} \\
& z=3 t \quad \Rightarrow \quad d z=3 d t \\
& \text { erie done } \begin{array}{c}
\int_{0}^{1}\left[3(z t)^{2}(2 d t)+(2 \cdot 2 t \cdot 3 t-t) d t\right. \\
+3 t d t]
\end{array} \\
& =\int_{0}^{1}\left(36 t^{2}+8 t\right) d t \\
& t=36\left[\frac{t^{3}}{3}\right]_{0}^{1}+8\left(\frac{t^{2}}{2}\right)_{0}^{1} \\
& =12+4 \\
& =16
\end{aligned}
$$

Conservative Field

Definition: A vector field $\overrightarrow{\boldsymbol{F}}$ defined in some region is called conservative if

$$
\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{2}} \vec{F} \cdot d \vec{r}
$$

whenever C_{1} and C_{2} are any two simple curves in the region with the same initial and terminal points.

Note: 1) A vector field $\overrightarrow{\boldsymbol{F}}$ is conservative (irrotational) if and only if $\int_{C} \overrightarrow{\boldsymbol{F}} . d \vec{r}=0 \quad 1$ for every simple closed curve in the region where \vec{F} is defined.
2) If $\overrightarrow{\boldsymbol{F}}$ is conservative, then $\overrightarrow{\boldsymbol{F}}$ is necessarily gradient of some scalar function.
3) If a vector field \mathbf{F} is defined in a simply-connected region in the $\mathbf{x y}$-plane and $\nabla \times \mathbf{F}=$ 0 throughout that region, then F is conservative.

Example

Show that $\overrightarrow{\boldsymbol{F}}=\left(2 x y+z^{3}\right) \hat{\imath}+x^{2} \hat{\jmath}+3 x z^{2} \hat{\boldsymbol{k}}$ is conservative force field. Find scalar potential ϕ of \vec{F}.

Soln. : If Curl $\overrightarrow{\boldsymbol{F}}=\mathbf{0}$

$$
\vec{\nabla} \times \vec{F}=\mathbf{0}
$$

Then \vec{F} is called conservative field (irrotational vector).

$$
\begin{aligned}
\operatorname{Curl} \vec{F}=\vec{\nabla} \times \vec{F} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x y+z^{3} & x^{2} & 3 x z^{2}
\end{array}\right| \\
& =\hat{\imath}(0-0)-\hat{\jmath}\left(3 z^{2}-3 z^{2}\right)+\widehat{\boldsymbol{k}}(2 x-2 x) \\
& =0
\end{aligned}
$$

Thus, \vec{F} is called conservative force field.
Soln. : If \vec{F} is conservative, then \vec{F} is necessarily gradient of some scalar function. Thus,

$$
\vec{F}=\nabla \phi
$$

$$
\begin{aligned}
& \quad\left(2 x y+z^{3}\right) \hat{\imath}+x^{2} \hat{\jmath}+3 x z^{2} \widehat{k}=\vec{F}=\hat{\imath} \frac{\partial \phi}{\partial x}+\hat{\jmath} \frac{\partial \phi}{\partial y}+\widehat{k} \frac{\partial \phi}{\partial z} \\
& \frac{\partial \phi}{\partial x}=2 x y+z^{3} \Rightarrow \phi=x^{2} y+x z^{3}+f_{1}(y, z) \\
& \frac{\partial \phi}{\partial y}=x^{2} \Rightarrow \phi=x^{2} y+f_{2}(x, z) \\
& \frac{\partial \phi}{\partial z}=3 x z^{2} \Rightarrow \phi=x z^{3}+f_{3}(x, y)
\end{aligned}
$$

All equations are same

Hence

$$
\begin{gathered}
f_{1}(y, z)=0 \\
f_{2}(x, z)=x z^{3} \\
f_{3}(x, y)=x^{2} y
\end{gathered}
$$

Hence, $\phi=x^{2} y+x z^{3}$ Ans.
Area

1. In calculus of a single variable $y=f(x)$ the definite integral

$$
\int_{x=a}^{x=b} f(x) d x
$$

for $f(x)>0$ is area under the curve from $x=a$ to $x=b$.
2. In calculus of a two variable the definite integral $\mathrm{z}=f(x, y)$

$$
\iint_{S} f(x, y) d x d y
$$

a) If $f(x, y)=1$, then

$$
\text { Area }=\iint_{S} d x d y
$$

b) If $f(x, y)>0$, the definite integral is equal to the volume under the surface $\mathrm{z}=f(x, y)$ and above $x y$-plane for x and y in the region R

Area using line integral

Let \mathbf{C} be simply connected smooth curve with anti clockwise direction in the plane \mathbf{R}

$$
\text { Area }=\frac{1}{2}\left(\int_{C} x d y-y d x\right)
$$

Using green's theorem, $\quad \int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y$ $F_{1}=-y, F_{2}=x$

$$
\int_{C} x d y-y d x=2 \iint_{S} d x d y=A r e a
$$

This integral is usually evaluated with help of parametric form.

SURFACE INTEGRALS

SURFACE INTEGRAL

An integral which is to be evaluated
Surface is Called Surface integral
Let \vec{F} be vector point function \& let S be given surface
\therefore Surface integral $=\iint_{S} \vec{F} \cdot \hat{n} d i s$ or $\iint_{S} \vec{F} \cdot d \vec{S}$
where

$$
\begin{aligned}
& \hat{n}=\text { unit normal vector to an element ds } \\
& d \vec{S}=\text { area of element } d s
\end{aligned}
$$

Note -

1. If $\vec{F}=F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \hat{k}$
$d \vec{s}=d y d z \hat{i}+d x d z \hat{j}+d x d y \hat{k}$
S.I. $=\iint \vec{F} \cdot d \vec{S}=\iint\left(F_{1} d y d z+F_{2} d x d z+F_{3} d x d y\right.$.)

2 Let R_{1} be projection on surface S on $x y$-plane then,

$$
\iint_{S} \vec{F} \cdot \hat{n} d s=\iint_{R_{I}} \frac{\vec{F} \cdot \hat{n}}{|\hat{n} \cdot \hat{k}|} d x d y \quad\left\{i \cdot e \cdot d s=\frac{d x d y}{|\hat{n} \cdot \hat{k}|}\right\}
$$

3. If projection of surface S in $x y$-plane which is circle $x^{2}+y^{2}=a^{2}$, then, use polar coordinate (r, θ) for solving integration

$$
\text { Put } x=r \cos \theta, \quad y=r \sin \theta, \quad d x d y=r d r d \theta
$$

4. If S is surface of the shape \&, then nosmal vector $\vec{n}=g_{r} a_{r}$ and $\hat{n}=\frac{g r a d \phi}{|q r a d \phi|}$

Example Evaluate $\iint_{1} \vec{F} \cdot \hat{n} d s$ loner $\vec{F}=y z \hat{\imath}+z x \hat{\jmath}+x y \not \hat{k}$ and S is that part of Surface of the sphere $x^{2}+y^{2}+z^{2}=1$ which lies in first quadrant.

Sols. Step 1

$$
\vec{f}=y z \hat{\imath}+z x \hat{\jmath}+x y \hat{k}
$$

step 2 find S (form of S) \hat{n}) $=\frac{g^{1 g i t}}{18-p}$
S: port of surface of sphere $x^{2}+y^{2}+z^{2}=1$ which lies in first quadrant \rightarrow Shape So, let $\phi=x^{2}+y^{2}+z^{2}=1$
step 3
find \hat{n}. (on basis of step 2)

$$
\begin{aligned}
& \hat{n}=\frac{g^{g a \partial \phi}-\frac{n}{g(a \partial \phi \mid}}{|\vec{n}|} \\
& \vec{n}=\operatorname{gra} \partial \phi=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}-1\right) \\
& =\frac{\hat{\imath}}{} \frac{\partial\left(x^{2}+y^{2}+z^{2}-1\right)}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}-1\right)+\hat{k} \frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right) \\
& =2 x \hat{\imath}+2 y \hat{\jmath}+2 z \cdot \hat{k} . \\
& \vec{r} g \operatorname{ga\partial \phi }=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k} \hat{\imath} \\
& \hat{\jmath}=\frac{g r a \partial \phi}{\mid g(a \partial \phi \mid}=\frac{2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}}{\sqrt{4\left(x^{2}+y^{2}+z^{2}\right)}}=\frac{2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}}{2} \\
& \Rightarrow \hat{\hat{n}_{1}}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}
\end{aligned}
$$

Step 4 Form projection (As)
Let R be projection of surface on $x y$-plane ie. $R: x^{2}+y^{2}=1 \quad[\because z=0]$
then, $d \boldsymbol{\beta}=\frac{d x d y}{|\hat{x} \cdot \hat{k}|}=\frac{d x d y}{|(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot \hat{k}|}=\frac{d x d y}{z}$

$$
\begin{aligned}
\vec{F} \cdot \hat{n} & =(y z \hat{\imath}+x z \jmath+y x \hat{k}) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \\
& =x y z+x y z+x y z \\
& =3 x y z
\end{aligned}
$$

$$
\begin{aligned}
\iint \tilde{F} \cdot \hat{n} d s & =\iint_{s}(3 x y z)\left(\frac{d x d y}{z}\right) \\
& =\iint_{R} 3 x y d x d y
\end{aligned}
$$

Step 5 Apply Region R
Since, $R: x^{2}+y^{2}=1$ is Circle in first quadrant
So use polar coodinate, $x=r \cos \theta, y=r \sin \theta$,

$$
d x d y=r d s d \theta
$$

step 6

$$
\begin{aligned}
& \iint \vec{F} \cdot \hat{n} d s=\iint_{R} 3 x y d x d y \\
&=\int_{\theta=0}^{\pi / 2} \int_{r=0}^{1} 3 \cdot(r \cos \theta) \cdot(r \sin \theta) \cdot(r d r d \theta) \\
&=\int_{\theta=0}^{\pi / 2} \int_{n=0}^{1} 3 r^{3} \sin \theta \cos \theta d r d \theta \\
& \frac{r=0}{\theta} t_{0} 1 \\
&=3 \int_{\theta=0}^{\pi / 2}\left(\frac{r 4}{4}\right)_{0}^{1} \sin \theta \cos \theta d \theta
\end{aligned}
$$

VOLUME INTEGRAL
Volume integral integrates over three dimentional region. The volume integral of i) \vec{F} over V is

$$
\begin{array}{r}
\iiint \vec{F} d V=\hat{i} \iiint F_{1} d x d y d z+\hat{j} \iiint_{2} d x d y d z \\
+\hat{R} \iiint F_{3} d x d y d z
\end{array}
$$

ii) \& over V is

$$
\iiint \phi d v=\iiint \phi d x d y d z\left(\phi=f_{1}(x, y, z)\right)
$$

ample: Evaluate $\int_{V}(2 x+y) d V$, where V is
closed region bounded by cylinder

$$
\begin{aligned}
& z=4-x^{2} \text { and planes } x=0, y=0 \\
& y=2 \text {, and } z=0 \text {. }
\end{aligned}
$$

ole

$$
\int_{V}(2 x+y) d v=\iiint(2 x+y) d x d y d z
$$

Region

$$
z=4-x^{2}
$$

$$
\begin{array}{ll}
x=0 & \\
y=0 & y=2
\end{array}
$$

$$
z=0
$$

For $x=0, x^{2}=4$

$$
\Rightarrow x=2
$$

GREEN'S THEOREM

Green's Theorem is relation between line integral and surface integral in $x y$-plane only.

If \mathbf{R} is closed region in the $\mathbf{x y}$ - plane bounded by simple closed curve \mathbf{C} (traversed in anti clockwise) and if $F_{1}(x, y)$ and $F_{2}(x, y)$ are continuous function having continuous partial derivatives in the region R, then

$$
\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y
$$

Note: $\vec{F}=F_{1}(x, y) \hat{\imath}+F_{2}(x, y) \hat{\jmath}$ and $d \vec{r}=d x \hat{\imath}+d y \hat{\jmath}$, Then

$$
\vec{F} . d \vec{r}=F_{1}(x, y) d x+F_{2}(x, y) d y
$$

Question 1

Using Green's theorem, Evaluate $\int_{C} x^{2} y d x+y^{3} d y$ where C is closed path formed by $y=x$ and $y=x^{3}$ from $(0,0)$ to $(1,1)$.

Soln. :

$$
\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y
$$

STEP I: Compare $\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y$ with $\int_{C} x^{2} y d x+y^{3} d y$

$$
F_{1}(x, y)=x^{2} y \quad \text { and } \quad F_{2}(x, y)=y^{3}
$$

STEP II:

$$
\frac{\partial F_{1}}{\partial y}=x^{2}, \quad \frac{\partial F_{2}}{\partial x}=0
$$

Soln. : STEP III: Substitute partial derivatives $\frac{\partial F_{1}}{\partial y}=x^{2}, \quad \frac{\partial F_{2}}{\partial x}=0$

$$
\begin{gathered}
\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y \\
\int_{C} x^{2} y d x+y^{3} d y=\iint_{R}\left(0-x^{2}\right) d x d y
\end{gathered}
$$

$$
=\iint_{R}-x^{2} d x d y
$$

R is region bounded by $y=x$ and $y=x^{3}$

$$
\int_{C} x^{2} y d x+y^{3} d y=\iint_{R}-x^{2} d x d y
$$

STEP IV: Find limit of \mathbf{y} in terms of \mathbf{x} from given Curves
R is region bounded by $y=x$ and $y=x^{3}$
Limit of y is from $y=x^{3}$ to $y=x$
STEP V: Find limit of x using given Curves
$y=x$ and $y=x^{3}$ intersect at
$x=x^{3}$
$x\left(1-x^{2}\right)=0 \Rightarrow x=0, x=1$
So, Limit of x is from $x=0$, to $x=1$

Figure

STEP VI: Substitute limit in surface integral

$$
\begin{gathered}
\int_{C} x^{2} y d x+y^{3} d y=\iint_{R}-x^{2} d x d y \\
=\int_{x=0}^{x=1} \int_{y=x^{3}}^{y=x}-x^{2} d x d y=\int_{x=0}^{x=1}-x^{2} d x[y]_{x^{3}}^{x} \\
=\int_{x=0}^{x=1}-x^{2}\left(x-x^{3}\right) d x=-\left(\frac{x^{4}}{4}-\frac{x^{6}}{6}\right)_{0}^{1} \\
=\frac{1}{6}-\frac{1}{4}=\frac{2-3}{12}=-\frac{1}{12} \quad \text { Ans. }
\end{gathered}
$$

Question 2

Using Green's theorem, Evaluate $\int_{C}\left(1+x y^{2}\right) d x-x^{2} y d y$ where C consist of arc of parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$.

Soln. :

$$
\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y
$$

STEP I: Compare $\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y$ with $\int_{C}\left(1+x y^{2}\right) d x-x^{2} y d y$

$$
F_{1}(x, y)=\left(1+x y^{2}\right) \quad \text { and } \quad F_{2}(x, y)=-x^{2} y
$$

STEP II:

$$
\frac{\partial F_{1}}{\partial y}=2 x y, \quad \frac{\partial F_{2}}{\partial x}=-2 x y
$$

Soln. : STEP III: Substitute partial derivatives $\frac{\partial F_{1}}{\partial y}=2 x y, \quad \frac{\partial F_{2}}{\partial x}=-2 x y$

$$
\left.\begin{array}{c}
\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y \\
\int_{C} x^{2} y d x+y^{3} d y
\end{array}=\iint_{R}(-2 x y-2 x y) d x d y\right)
$$

C consist of arc of parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$.

$$
\int_{C}\left(1+x y^{2}\right) d x-x^{2} y d y=\iint_{R}-4 x y d x d y
$$

STEP IV: Find limit of \mathbf{y} in terms of \mathbf{x} from given Curves
R is region bounded by $y=x^{2}$ and $y=1$
STEP V: Find limit of x using given Curves
$y=x^{2}$ and $y=1$ intersect at
$1=x^{2}$
$x=-1,1$
So, Limit of x is from $x=-1$ to $x=1$
Limit of y is from $y=x^{3}$ to $y=x$

$(0,0)$

STEP VI: Substitute limit in surface integral

$$
\int_{C}\left(1+x y^{2}\right) d x-x^{2} y d y=\iint_{R}-4 x y d x d y
$$

$$
\begin{gathered}
=\int_{x=-1}^{x=1} \int_{y=x^{2}}^{y=1}-4 x y d x d y \\
=-4 \int_{x=0}^{x=1} x d x\left[\frac{y^{2}}{2}\right]_{x^{2}}^{1} \\
=-2 \int_{x=-1}^{x=1} x\left(1-x^{4}\right) d x=-2\left[\frac{x^{2}}{2}-\frac{x^{6}}{6}\right]_{-1}^{1}=0
\end{gathered}
$$

STOKE'S THEOREM

Stoke's Theorem is relation between line integral and surface integral.
If $\overrightarrow{\boldsymbol{F}}$ is any continuous differentiable vector function and S is surface bounded by a curve C then,

$$
\begin{aligned}
& \int_{C} \vec{F} \cdot d \vec{r}=\iint_{R} \operatorname{Cur} l \vec{F} \cdot \widehat{n} d s \\
& \int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s
\end{aligned}
$$

1. The Green's theorem is known as Stokes Theorem in a plane. 2. $\int_{C} F_{1}(x, y) d x+F_{2}(x, y) d y+F_{3}(x, y) d y=\iint_{R}\left[\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) d y d z+\left(\frac{\partial F_{1}}{\partial z}-\right.\right.$ $\left.\left.\frac{\partial F_{3}}{\partial x}\right) d x d z+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y\right]$

IMPORTANT NOTES

1) For a circle $x^{2}+y^{2}=r^{2}$

Polar coordinates are $\quad x=r \cos \theta, y=r \sin \theta d x d y=r d r d \theta$
Limit of r vary from 0 to r. Limit of θ vary from 0 to 2π (Depends on problem)
2) For a sphere $x^{2}+y^{2}+z^{2}=r^{2}$

Polar coordinates are
$x=r \sin \phi \cos \theta, \quad y=r \sin \phi \sin \theta, \quad z=r \sin \phi, \quad d x d y=r^{2} \sin \phi d r d \theta$

Limit of ϕ vary from 0 to π
3) For a parabola $y=x^{2}$

Parametric form are $x=t, y=t^{2}, d x=d t, d y=2 t d t$
4) For a Cylinder $x^{2}+y^{2}=r^{2}, z=a$
cylindrical form is $\quad x=r \cos \theta, y=r \sin \theta, z=z$
5) If the projection of surface S in $x y$ plane then $\widehat{\boldsymbol{n}}=\widehat{\boldsymbol{k}}$

Thus, $d s=d x d y$
6) Let S is the surface of shape ϕ, then normal vector

$$
\begin{aligned}
\vec{n} & =\operatorname{grad} \phi \\
\widehat{n} & =\frac{\operatorname{grad} \phi}{|\operatorname{grad} \phi|}
\end{aligned}
$$

Question 1

Using Stoke's theorem, Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=y^{2} \hat{\imath}+x y \hat{\jmath}+x z \widehat{k}$, and C isbounding curve of hemisphere $x^{2}+y^{2}+z^{2}=9, z>0$ oriented in a positive direction.

Soln. :

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s
$$

STEP I: Find $\overrightarrow{\boldsymbol{F}}$

$$
\vec{F}=y^{2} \hat{\imath}+x y \hat{\jmath}+x z \widehat{k}
$$

STEP II: Obtain $\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{F}}$

$$
\operatorname{Curl} \vec{F}=\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} & x y & x z
\end{array}\right|=-z \hat{\jmath}-y \widehat{k}
$$

STEP III: Find $\widehat{\boldsymbol{n}}$
Let shape $\phi=x^{2}+y^{2}+z^{2}-r^{2}$

$$
\operatorname{grad} \phi=\nabla \phi=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}
$$

$$
\begin{gathered}
\widehat{n}=\frac{\operatorname{grad} \phi}{|\operatorname{grad} \phi|}=\frac{2 x \hat{\imath}+2 y \hat{\jmath}+2 z \widehat{k}}{\sqrt{4\left(x^{2}+y^{2}+z^{2}\right)}}=\frac{2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}}{2 \cdot 3} \\
\widehat{n}=\frac{x \hat{\imath}+y \hat{\jmath}+z \widehat{k}}{3}
\end{gathered}
$$

STEP IV: Find $d s$

$$
d \boldsymbol{s}=\frac{d x d y}{|\hat{n} \cdot \hat{k}|}=\frac{d x d y}{\left|\frac{\mid x+y \rho+z \bar{k} \widehat{k}}{3}\right|}=3 \frac{d x d y}{z}
$$

STEP V: Substitute $\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{F}}, \widehat{\boldsymbol{n}}$ and $d s$ in

$$
\begin{gathered}
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s \\
=\iint_{R}(-z \hat{\jmath}-y \widehat{k}) \cdot\left(\frac{x \hat{\imath}+y \hat{\jmath}+z \widehat{k}}{3}\right) 3 \frac{d x d y}{z} \\
=\iint_{R}(-z y-y z) \cdot \frac{d x d y}{z}=-2 \iint_{R} y d x d y \\
\int_{C} \vec{F} \cdot d \vec{r}=-2 \iint_{R} y d x d y
\end{gathered}
$$

STEP VI: Take projection in $x y$-plane and find limit of x and y
Projection of given Surface $S x^{2}+y^{2}+z^{2}=9$ in $x y$-plane $(z=0)$ is

$$
x^{2}+y^{2}+=9
$$

Put $x=r \cos \theta, y=r \sin \theta d x d y=r d r d \theta$
Limit of r vary from 0 to 3 . Limit of $\boldsymbol{\theta}$ vary from 0 to 2π
STEP VII: Apply limit of r and θ

$$
\begin{gathered}
\int_{C} \vec{F} \cdot d \vec{r}=-2 \iint_{R} y d x d y=-2 \int_{\theta=0}^{2 \pi} \int_{r=0}^{r=3} r \sin \theta . r d r d \theta \\
=-2 \int_{\theta=0}^{\theta=2 \pi} \sin \theta d \theta \cdot\left[\frac{r^{3}}{3}\right]_{0}^{3} \\
=-18 \int_{\theta=0}^{\theta=2 \pi} \sin \theta d \theta \\
=-18[-\cos \theta]_{0}^{2 \pi}=0 \text { Ans. }
\end{gathered}
$$

Question

Verify Stoke's theorem for the function $\overrightarrow{\boldsymbol{F}}=\boldsymbol{y}^{\mathbf{2}} \hat{\boldsymbol{\imath}}+x y \hat{\jmath}$ integrated along the square whose sides are $\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{0}, \mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{a}$ in the plane $\mathbf{z}=\mathbf{0}$.

Soln. :According to Stokes theorem

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s
$$

R.H.S-STEP I:

$$
\vec{F}=y^{2} \hat{\imath}+x y \hat{\jmath}
$$

STEP II: Obtain $\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{F}}$
$\operatorname{Curl} \overrightarrow{\boldsymbol{F}}=\vec{\nabla} \times \overrightarrow{\boldsymbol{F}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \widehat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^{2} & x y & 0\end{array}\right|=(y-2 y) \widehat{\boldsymbol{k}}=-y \widehat{\boldsymbol{k}}$
$\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s$
$\overrightarrow{\boldsymbol{V}} \times \overrightarrow{\boldsymbol{F}}=-\boldsymbol{y} \widehat{\boldsymbol{k}}$
STEP III: Find \widehat{n}
Since the square is in $x y-p l a n e$
Hence, $\widehat{\boldsymbol{n}}=\widehat{\boldsymbol{k}}$
STEP IV: Find $d s$
$d s=\frac{d x d y}{|\hat{n} \hat{k}|}=d x d y \Rightarrow \quad d s=d x d y$

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s
$$

STEP V- Limit of x and y

$$
x=0 \text { to } x=a \text { and } y=0 \text { to } y=a
$$

R.H.S

$\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s=\int_{x=0}^{a} \int_{y=0}^{a}-y \widehat{k} . \widehat{k} d x d y$

$$
=-\int_{x=0}^{a} \int_{y=0}^{a} y d x d y=-\int_{x=0}^{a}\left[\frac{y^{2}}{2}\right]_{0}^{a} d x=-\frac{a^{2}}{2}[x]_{0}^{a}=-\frac{a^{3}}{2}
$$

$\iint_{R}(\nabla \times \vec{F}) \cdot \widehat{n} d s=-\frac{a^{3}}{2}$

L.H.S.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r} \\
& +\int_{C_{3}} \vec{F} \cdot d \vec{r}+\int_{C_{4}} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

STEP I- $\overrightarrow{\boldsymbol{F}}=\boldsymbol{y}^{2} \hat{\boldsymbol{\imath}}+\boldsymbol{x} \boldsymbol{y} \hat{\boldsymbol{\jmath}}$
$d \vec{r}=d x \hat{\imath}+d y \hat{\jmath}$

$$
\begin{gathered}
\vec{F} \cdot d \vec{r}=\left(y^{2} \hat{\imath}+x y \hat{\jmath}\right) \cdot(d x \hat{\imath}+d y \hat{\jmath})=y^{2} d x+x y d y \\
\vec{F} \cdot d \vec{r}=y^{2} d x+x y d y
\end{gathered}
$$

Along C_{1}

$y=0 \Rightarrow d y=0$
$\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{1}} y^{2} d x+x y d y$

$$
=\int_{0}^{a} 0 . d x+x .0 .0=0
$$

$\int_{C_{1}} \vec{F} \cdot d \vec{r}=0$

Along C_{2}

$x=a \Rightarrow d x=0$
Limit of y is from $y=0$ to $y=a$

$$
\begin{aligned}
\int_{C_{2}} \vec{F} \cdot d \vec{r} & =\int_{C_{2}} y^{2} d x+x y d y \\
& =\int_{C_{2}} y^{2} \cdot 0+a \cdot y d y=\int_{0}^{a} a . y d y a \cdot\left[\frac{y^{2}}{2}\right]_{0}^{a}=\frac{a^{3}}{2}
\end{aligned}
$$

$\int_{C_{2}} \vec{F} \cdot d \vec{r}=\frac{a^{3}}{2}$

Along C_{3}

$$
y=a \Rightarrow d y=0
$$

Limit of x is from $x=a$ to $x=0$

$$
\begin{gathered}
\int_{C_{3}} \vec{F} \cdot d \vec{r}=\int_{C_{3}} y^{2} d x+x y d y \\
=\int_{C_{3}} a^{2} \cdot d x+x y \cdot 0=a^{2} \int_{a}^{0} d x=a^{2}(0-a)=-a^{3} \\
\int_{C_{3}} \vec{F} \cdot d \vec{r}=-a^{3}
\end{gathered}
$$

Along C_{4}

$$
\begin{gathered}
x=0 \Rightarrow d x=0 \\
\int_{C_{4}} \vec{F} \cdot d \vec{r}=\int_{C_{4}} y^{2} d x+x y d y \\
=\int_{a}^{0} y^{2} \cdot 0+0 . y d y=0 \\
\int_{C_{4}} \vec{F} \cdot d \vec{r}=0
\end{gathered}
$$

L.H.S.

$$
\begin{gathered}
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r}+\int_{C_{3}} \vec{F} \cdot d \vec{r}+\int_{C_{4}} \vec{F} \cdot d \vec{r} \\
=0+\frac{a^{3}}{2}-a^{3}+0 \\
=-\frac{a^{3}}{2}
\end{gathered}
$$

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{n} d s=-\frac{a^{3}}{2} \quad \text { Hence Verified. }
$$

DIVERGENCE THEOREM

Divergence Theorem is relation between surface integral and volume integral.
If $\overrightarrow{\boldsymbol{F}}$ is any continuous differentiable vector function in region V bounded by a closed surface S then,

$$
\begin{aligned}
& \iint_{R} \vec{F} \cdot \widehat{n} d s=\iiint_{V} \operatorname{div} \vec{F} d V \\
& \iint_{R} \vec{F} \cdot \widehat{n} d s=\iiint_{V}(\nabla \cdot \vec{F}) d V
\end{aligned}
$$

1. If \vec{F} is solenoidal then $\iint_{R} \vec{F} . \widehat{n} d s=0$.
2. $\iint_{S} F_{1}(x, y) d y d z+F_{2}(x, y) d x d z+F_{3}(x, y) d x d y=\iiint\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d V$

Question 1

Using Divergence theorem theorem, Evaluate $\iint_{R} \vec{F} \cdot d \vec{S}$ where $\vec{F}=4 x \hat{\imath}-2 y^{2} \hat{\jmath}+z^{2} \widehat{\boldsymbol{k}}$, and S is surface bounding region $x^{2}+y^{2}=4, z=0, z=3$.

Soln. :

$$
\iint_{R} \vec{F} \cdot d \vec{S}=\iiint_{V}(\nabla \cdot \vec{F}) d V
$$

STEP I: Find $\overrightarrow{\boldsymbol{F}}$

$$
\vec{F}=4 x \hat{\imath}-2 y^{2} \hat{\jmath}+z^{2} \hat{k}
$$

STEP II: Obtain $\boldsymbol{\nabla} . \overrightarrow{\boldsymbol{F}}$

$$
\begin{aligned}
& \operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
= & \frac{\partial 4 x}{\partial x}+\frac{\partial 2 y^{2}}{\partial y}+\frac{\partial z^{2}}{\partial z}=4-4 y+2 z
\end{aligned}
$$

STEP III: Substitute $\boldsymbol{\nabla} . \vec{F}=4-4 y+2 z$ in Divergence theorem

$$
\iint_{R} \vec{F} \cdot d \vec{S}=\iiint_{V}(\nabla \cdot \vec{F}) d V
$$

$$
=\iiint_{V}(4-4 y+2 z) d x d y d z
$$

STEP IV: Find range of \mathbf{z} from region.
Limit of z is from 0 to 3

$$
\begin{gathered}
\iint_{R} \vec{F} \cdot d \vec{S}=\iint_{R} \int_{z=0}^{z=3}(4-4 y+2 z) d x d y d z \\
\quad=\iint_{R}\left(4 z-4 y z+z^{2}\right)_{0}^{3} d x d y d z
\end{gathered}
$$

$=\iint_{R}(21-12 y) d x d y$
STEP V: Find limit of x and y
Surface S : $x^{2}+y^{2}=4$ which is circle, so polar coordinates
$x=r \cos \theta, y=r \sin \theta d x d y=r d r d \theta$
STEP VI : Substitute limit
$x=r \cos \theta, y=r \sin \theta d x d y=r d r d \theta$
Limit of \mathbf{r} vary from 0 to 2 . Limit of $\boldsymbol{\theta}$ vary from 0 to 2π

$$
\begin{aligned}
& \iint_{R} \vec{F} \cdot d \vec{S}=\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=2}(21-12 r \sin \theta) \cdot r d r d \theta \\
&=\int_{\theta=0}^{\theta=2 \pi}\left(21 \frac{r^{2}}{2}-4 r^{3} \sin \theta\right)_{0}^{2} d \theta \\
&=\int_{\theta=0}^{\theta=2 \pi}(42-32 \sin \theta) d \theta \\
&=(42 \theta-32 \cos \theta)_{0}^{2 \pi} \\
&=(42 \times 2 \pi-32(0-0))=84 \pi
\end{aligned}
$$

Question 2

Using Divergence theorem theorem, Evaluate $\iint_{R} \vec{F} \cdot d \vec{S}$ where $\vec{F}=x \hat{\imath}-y \hat{\jmath}+\left(z^{2}-1\right) \widehat{k}$, and S is surface bounding region $x^{2}+y^{2}=4, z=0, z=3$.

$$
\iint_{R} \vec{F} \cdot d \vec{S}=\iiint_{V}(\nabla \cdot \vec{F}) d V
$$

Soln. STEP I: Find $\overrightarrow{\boldsymbol{F}}$

$$
\vec{F}=x \hat{\imath}-y \hat{\jmath}+\left(z^{2}-\mathbf{1}\right) \widehat{\boldsymbol{k}}
$$

STEP II: Obtain $\boldsymbol{\nabla} . \overrightarrow{\boldsymbol{F}}$

$$
\begin{gathered}
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
=\frac{\partial x}{\partial x}+\frac{\partial(-y)}{\partial y}+\frac{\partial\left(z^{2}-1\right)}{\partial z}=1-1+2 z=2 z
\end{gathered}
$$

STEP III: Substitute $\boldsymbol{\nabla} . \overrightarrow{\boldsymbol{F}}=\mathbf{2 z}$ in Divergence theorem
$\iint_{R} \vec{F} \cdot d \vec{S}=\iiint_{V}(\nabla \cdot \vec{F}) d V$
$=\iiint_{V}(2 z) d x d y d z$
STEP IV: Find range of \boldsymbol{z} from given region.
Limit of z is from 0 to 1
$\iint_{R} \vec{F} \cdot d \vec{S}=\iint_{R} \int_{z=0}^{z=1}(2 z) d x d y d z$
$=\iint_{R}\left(\frac{2 z^{2}}{2}\right)_{0}^{3} d x d y$
$=\iint_{R} d x d y=$ Area of Surface
Surface is circle $x^{2}+y^{2}=4$, Area of the surface $=\pi r^{2}$
$\iint_{R} \vec{F} \cdot d \vec{S}=\iint_{R} d x d y=\pi 2^{2}=4 \pi \quad$ Ans.

- There will be separate question set for Assignments and Practice.
- All these questions are also explained in following YouTube Link https://www.youtube.com/channel/UCYg9RXUfbL1fdQhk1KdFsZQ?view_as=subscribe r

